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Abstract-In this paper. we are concerned with the finite deformation ofa neo·Hookean hyperelastic
pseudo-rigid membrane with a hinged support point and with a movable point on a fixed straight
line. The movable point is subjected to a dead load. and the distance between the support point
and the line is arbitrary. After determining the static equilibrium positions of the membrane. the
elastic properties of the structure are indicated. Finally. snapping behavior of the membrane is
described by means of the theory of elastic stability. The results obtained may be appli~-d to
representing a secant modulus of shear for an unstable elastic material point.

I. INTRODUCTION

Static postbuckling and snapping of thin structures have been the subject of intensive
research from the 1950s, because of their wide applications in civil, mechanical and aero
space engineering. A numerical work on circular arches can be found in the article of
Huddleston (\968). A detailed review on the relevant problem of arches, beams .tnd rings
was given in the surveys of DaDcppo and Schmidt (1970) and Schmidt and DaDcppo
(\97\). As for shells, the research papers arc also too numerous to be listed. Here, we cite
only one due to Brodhtnd and Cohen (1987). Because it is difficult to solve the non-linear
dilferential equations that characterize the behavior of these thin structures, numerical
methods are usually adopted. On the other hand, the static stability of homogeneously
deformed elastic cubes and clastic square shl.'Cts, subject to symmetric loads, has been
investigated in an:tlytic w:tys by, for example, Rivlin (1948), Be,tHy (1965, 1967) and
MacSithigh (1986). However, up to now, we h:tve not found research work dealing with
the sn:tpping of a homogeneollsly-deformed clastic body with dimension more than one.
For this reason, the static snapping of a neo-Hookean hypcrelastic pseudo-rigid membrane
(a two-dimensional body) will be studied in this paper, based on the theory of clastic
stability. The same approach of amllysis may be generalized to a hypcrelastic pseudo-rigid
disc (a three-dimensional body).

A body is pseudo-rigid if its deformation gradient is homogeneous throughout the
body whatever the loads. This is analogous to a rigid body whose deformation gradient is
orthogonal whatever the loads. For the theory of pseudo-rigid bodies, cf. the monograph
of Cohen and Muncaster (1988). As a matter of fact, when a body is regarded to be
pseudo-rigid, one encounters only ordinary differential equations or algebraic equations,
respectively, when dynamic motion or static deformation of the body is to be determined.
Of course, it is clear that in a static problem a homogeneous deformation may be exact,
while in a dynamic problem a homogeneous deformation is merely approximate. With the
application of the theory of pseudo-rigid bodies, the solutions of a variety of dynamic
problems ofelastic bodies have been obtained by Cohen and Muncaster (1988), Cohen and
MacSithigh (1989) and Cohen and Sun (1988, 1990). We now explain another possible
application of the theory of pseudo-rigid bodies. Since deformations of a pseudo-rigid
body are homogeneous, it behaves mechanically and mathematically like a material point.
Considering that there is no restriction to the shape of a pseudo-rigid body, we may use it
to model a material point with arbitrary configuration. It is known that some material points
exhibit complex properties, such as elastic instability. By analyzing elastically-unstable
deformations of a pseudo-rigid body, one may gain insight into the unstable behavior of a
material point. and use this to establish a constitutive relation for an elastically-unstable
material point. This is another reason for us to investigate the snapping of an elastic
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fig. I. A pseudo-rigid membrane with a fixed point b and a movable point d on a fixed straight
line.

membrane. Regarding the membrane as a pseudo-rigid body, we are able to find an analytic
solution denoting the relation between load and deformation that includes snapping-a
phenomenon of elastic instability.

In Section 2, we first emphasize that for a pseudo-rigid body, its center of mass can be
regarded as a material point. and can be chosen as a base point of the body. Then we review
the balance equations of linear momentum and tensor moment of momentum for a pseudo
rigid body. In Section 3, the problem ofa flat pseudo-rigid membrane with a hinged support
point ~md a movable point on a fixed straight line is presented, as shown in Fig. I. A dead
load is applied at the movable point of the membrane. The distance between the fixed point
and the line is arbitrary. The deformation of the membrane is allowed to be finite, while
the material of the membrane is assumed to be neo-Hookean hypcrclastic. The equations
that govern the static deformation of the structure are given at the end of Section 3. In
Section 4, a perturbation solution for a small displacement of the membrane subject to a
small dead load is derived. For finite deformation of the membrane. the properties of the
structure are qualitatively presented in terms of the relation between the load and the
displacement of the movable point. Then numerical examples are given to explain the
behavior of the structure. In Section 5. based on the energy criteria (the adjacent method
and the derivative method) of elastic stability, stable and unstable equilibrium positions of
the membrane are indicated to illustrate snapping behavior of the membrane. With the
results obtained, we may use an elastic membrane to construct a "spring" with positive.
negative and neutral elasticity, as well as the snapping behavior indicated in Sections 4 and
5. At the end of Section 5, we explain that our results may also be used to represent a secant
modulus of shear for an unstable elastic material point.

2. PRELIMINARIES OF PSEUDO-RIGID BODIES

We take a three-dimensional Euclidean space E with a fixed origin 0 to model an
inertial frame of reference. Let pR and P denote the reference and the present configurations
of a continuous material body in E. We suppose the body to undergo a smooth motion X
such that the positions XE pR and x E P of a material point p in the body are related by

x(p) = X(X(p), f), (I)

where f is the time parameter. When pR, p and m are used to denote the mass densities
measured on pR, P and the total mass of the body. respectively, conservation of mass can
be represented by the global form :
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m = f pR = f p.
pit P

The centers of mass of pR and P, respectively. are defined by

809

(2)

Xc:=~ rpX.
m Jp (3)

A body B is said to be pseudo-rigid if in all motions its deformation gradient

F:= ex/eX with detF> 0 (4)

depends only on time t. For the more detailed definition. the reader may refer to the
monograph of Cohen and Muncaster (1988). [t is obvious that a general motion satisfying
(4) can be represented as

x = xo(t) + F(t)X. (5)

where XoE E is an arbitrary vector. Now let Xh and Xh be the referential and the present
positions of a material point b in B. respectively. Then it follows from (5) that for a pseudo
rigid body, the following two relations hold:

(6)

(7)

Since the point b serves 10 describe the motion. it will be called a base point of the body B
in what follows.

It is evident that if b is a fixed point of the body B, then

for all time. [n this case, a motion of the body B can be written as

x = ([ - F(t»Xb + F(t)X,

(8)

(9)

from (7) and (8), where I is the identity tensor. [n particular, if the origin 0 of E is chosen
in such a way that it coincides with the fixed point b, then Xb = 0, which together with (9)
yields

x = F(t)X. (10)

Furthermore. by integration of (7) over B with the density of mass as a weighting
function and by the use of (2) and (3), we obtain

(II)

A comparison of (7) and (II) shows that for a pseudo-rigid body, its center of mass
undergoes the same motion with a material point in it, although the center of mass of the
body may not be a real material point. This property of a pseudo-rigid body allows us to
treat the center of mass as a material point. As an application of this property, we are able
to choose the center of mass as a base point of the body. This application then can be
extended to a system of multi-pseudo-rigid bodies or a rod with homogeneously-deformed
cross-sections. [f a pseudo-rigid body has a fixed point, then we have
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(\2)

In addition. if the choice for (10) is taken. then

(13)

Here. validity of both (12) and (13) is based on the fact that the center of mass can be
regarded as a material point for a pseudo-rigid body.

In order to determine a motion ofa pseudo-rigid body B. we need the following balance
equations of linear momentum and tensor moment of momentum described on pR and P.
respectively. given by Cohen and Muncaster (1988):

Here.

(14)

(15)

f =f t+ [ pb;
s Jp (16)

M = f t ® x· + [ lIb ® x· ;
s J"

(17)

~. -1 s·... - "',

"
E = [ x· ® x·p;J,. ( 18)

X· = x-xb, X* = X-Xb, L = fl' " (19)

with h as either the center of mass, or a fixed point of B if it exists; S Rand S are the Piohl
Kirchhoff stress and the Cauchy stress so that 1: Rand 1: are the internal force-moments in
pR and P, respectively, and both of them arc constitutive quantities; t Rand t are tractions
on SR = 8(PR) and S = 8(P); and bRand b arc body forces per unit mass of pR and P.
respectively. It follows from the above definitions that fR, M Rand r, M are the external
forces. the external force-moments with respect to the point h, acting on pR ~lOd P,
respectively; and E Rand E are the Euler tensors of pR and P with respect to Xb and Xb,

respectively. In fact, (14) and (15) can be transformed from each other through the following
relations:

(20)

Cohen and Sun (1988) have pointed out that if an arbitrary material point of the body is
chosen as a base point, the balance equations of tensor moment of momentum will not
have the simple forms (14h and (ISh

In the theory of pseudo-rigid bodies described above. the mechanical property of the
body is not specified. In other words, the theory can be applied to any material bodies
undergoing homogeneous deformation. Nevertheless, it is appropriate to apply (14) to
elastic or hyperelastic bodies for which F is a fundamental kinematic variable, and to apply



Snapping of an elastic pseudo-rigid body 811

(15) to those material bodies with L as the fundamental kinematic variable. In this paper.
we shall be concerned with a hyperelastic pseudo-rigid body which is defined by

I: R = dO"(F)(dF. (21)

where 0" is the stored-energy function. When a hyperelastic pseudo-rigid body is subjected
to an internal constraint defined by g(F) = O. (21) should be replaced by

I: R = dO"(F)(dF + N.

Here. as the reaction stress to the constraint. N has the form

N = mqdg(dF.

(22)

(23)

In (23) q is a scalur function to be determined by the balance equations of the body, and
m denotes the muss of the body.

3. STATEMENT OF THE PROBLEM

Consider a tlat hypcrelastic membrane which has a hinged support point at b and has
a movable point d on a fixed straight line co-planar with the membrane. The distance
betwecn the points hand c/ is arbitrarily adjustable. For simplicity of graphics, let the
rcference configumtion of the membrane be circular. We use XJ and Xd to dcnote the
refcrence and the present positions of the point c/o Suppose that the point d is subjected to
a deud load G pamllel to the line, .1Ild that there is no frictional force at the points band
c/o We t.lke l' and II to denote the external forces acting at the points band d, respectively,
which arise from contact of the membrane with the support point and the linc, cf. Fig. I.
Wc will analyze the static deformation of the membrane in its own plane and preclude
buckling out of the plane.

We let the origin 0 of the Euelidean space E be coincident with the fixed point band
choose .1Il orthonormal basis (0, iI' i J ) such that the base vectors i 1und i~ arc normal and
parallel to the fixed fine. respectively. Lct XJ be on the axis i I' as shown in Fig. I. Then for
the given problem, we can write

XJ = I.i.. (24)

T = mT.i., (25)

by applying the usual summation convention on repeated indices. Here, (X = 1,2. L and I,
are positive constants, while IJ is a variable; and G, T. and H determine the magnitude and
direction of G, T and H, respectively.

To analytically seek the properties of the given structure, we regard the membrane as
a pseudo-rigid body. Knowing that the deformation of the membrane under consideration
is not homogeneous. we recognize that our results based on the theory of pseudo-rigid
bodies will be approximatc. With the given choice of the origin 0 and with the fixed point
as the base point of the pseudo-rigid membrane, the static deformation and the balance
equations can be represented as

and

G+T+H = 0,

x = FX, (26)

(27)

from (10) and (14), respectively, when the body force of the membrane is neglected and the
inertia terms are removed.
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Ifwe write F = F'ffi, ® iff' then it can be easily shown from (24) and (26) that

(28)

where x measures the dimensionless displacement of the point d. We note that D is a
constant and that D > 0 as follows from the definitions of II and L.

In what follows, we will be concerned with the neo-Hookean hyperelastic membrane
(Truesdell and Noll, 1965) characterized by

cr(F) = mll(F' F - 2)/2, det F = I, (29)

where II > 0 is a material constant, and (29) 2 expresses the incompressibility of the material.
We indicate that a three-dimensional body is incompressible if its volume is constant, while
a two-dimensional body is incompressible if its area is conserved. It follows from (22), (23)
and 9 = det F -I that

(30)

where q is a scalar to be determined by the balance equations (27).
Finally, upon substitution of (24), (25), (28) and (30) into (27), we obtain the balance

equations in the component form:

IID+qFu- flL = 0,

JIFll -qx = 0, JIFll +qD = o.

(31 )

(32)

In order that the number of the equations is the same as that of the unknowns, we supply
the condition

DFzz -XFll = I, (33)

whieh follows from (28) and (29) 2. A general pseudo-rigid membrane has four degrees of
freedom. However, since the external constraint (28) I and the internal constraint (29) l are
introduced, the degrees of freedom of the deformation of the membrane arc only two.

For the given problem, there is no need to decompose the deformation gradient F into
the rotation tensor R and the stretch tensor U or V. Of course, it is not ditlicult to obtain
R. U and V by the use of the formulae of Hoger and Carlson (1984), once F is found.

4. THE STATIC EQUILIBRIUM POSITIONS

In this section we will indicate the elastic behavior of the membrane described in
Section 3 through the determination of the static equilibrium positions of the membrane.

It can be shown that (32) and (33) are equivalent to

p = x[I-I/(D2+xl )lJ,

Fzz = D/(D 2 + x 2
),

(34)

(35)

where the dimensionless moment p is defined by

p:= GL/II· (36)

Since once x is solved from (34), the other variables can be determined by (31) and (35),
the variable x can be regarded as one defining the static deformation of the membrane. For
this reason, we will call x satisfying (34) an equilibrium position of the membrane.

For further discussion, we write (34) in an alternative form:
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(37)

It is trivial from (37) that x = 0 is an equilibrium position for all D > 0 ifp = O. To proceed,
we consider the case in which p is small in the sense that p ~ 0, and seek the solution of
(37) in the perturbation form:

Upon substitution of (38) into (37), we get the perturbation equations:

[ " ']Xo l-l/(D- +xii)- = 0,

D' ') '/[ , " "']Xl = ( -+ Xii " (D" +xii)- +4(D" +xii)xii -1 .

(38)

(39)

(40)

It is not difficult to see the following situation:

(a) If D = 1. (39) has only one solution Xo = 0 but (40) is singular so that a per
turbation solution of (37) does not exist.

(b) If D > 1. (39) has only one solution Xo =0 from which and (40), Xl = D4/(D 4
- I).

Consequently, (37) has one perturbed solution,

(c) If D < I. (39) has the three solutions:

(41)

X(~ = 0, (42)

from which and (40), :d = _D4 /(I_D 4
), xf·c = 1/[4(I-D2)J. Consequently, (37) has

three perturbed solutions:

X ... = _pD4 /(I_D 4 )+O(p2),

x H
•
C = ±~+p/[4(I-D2)J+O(p2).

(43)

(44)

For the special case p = 0, it is apparent from (43) and (44) that the exact solution of (37)
with D < I is (42), the last two of which together with (29) and (35) lead to

I1(F) = 0, (45)

Here (45h indicates that for p =0, the equilibrium positions xg·c actually are those
associated with the natural state of the membrane (Truesdell and Noll, 1965).

When p is arbitrary, a closed-form solution of the fifth-order algebraic equation (37)
of x may not exist. But it is evident in view of (34) that p may be regarded as a function of
x, although p itself is a parameter whereas x is a variable in the given problem. In fact, at
a glance on (34), we find that for any D > 0, p is a single-valued, odd and smooth function
of x, which has an asymptotic line p = x. From the oddness, suffice it to consider x ~ 0, in
order to explore further properties of the structure.

It follows from differentiation of (34) with respect to x that

dp/dl: = 1_1/(D2+x2)2+4x2/(D2+.l:2)3,

d 2p/dx2 = 12x(D2-x2)/(D2+x2r" (46)

which have the following properties:

(d) If D > 0, d2pldx2is zero for x = 0 or x = D; is positive for 0 < x < D; is negative
for x> D.
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(e) If D = I. dl'/dx = 0 for x = O. and dl'/dx > 0 for all x > O.
(I") If D > I. dl'/dx > 0 for all x.
(g) IfD<1.

dl'/dx < 0 for x = O. dl'/dx > 0 for x~ x::. (47)

where x:: is given by (42)!. There exists only one real value .i of x. satisfying

(48)

such thatt dl'/dxl<~, = O. Il is evident from (47) that 0 < .i < x~.

By gathering all the properties from (a) to (g) listed above and the anti-symmetry of
the function I'(x). we are able to qualitatively draw the load-displacement curves in terms
of I' versus x for all D. Nevertheless, numerical examples may be helpful to explain the
behavior of the strul:ture here and later. For this reason. we plot (34) with D = 0.5. I. 1.5
in Fig. 2. It is clear that in Fig. 2. the intersection of any straight line p = constant with
these curves defines a static equilibrium position of the membrane. Thus the uniqueness or
non-uniqueness of the static equilibrium positions of the membrane for any I' can be
observed from Fig. 2. Secondly. the figure shows that the curve of D = I is flat at x = O.
This is the reason why a perturbed solution in the form (38) does not exist for the structure
with D = I. Finally. it is found from Fig. 2 that if D » I the elastic structure comprised of
the neo-Hookean pseudo-rigid membrane is almost linearly clastic. If D = I, it is non
linearly and linearly clastic. when Ixl < I and Ixl ~ I. respectively. If D < I, it has negative
and positive elastic tangent modulus when Ixl < I.il and Ixl > I.il. respectively, where I.il
satisfies (48). Therefore. one may use an elastic pseudo-rigid membrane to construct a
"spring" with the behavior shown in Fig. 2.

While Fig. 2 gives the equilibrium positions of the membrane. the question as to the
elastic stability of these equilibrium positions still remains. In the next section we will utilize
the theory of elastic stability to study this question.

t After reduction of fractions to a common denominator. dpld:c = 0 is equivalent to (O'+:c')J +
3(0'+:c') -40' = O. which as a Cardano's equation has only one real.\: root shown in (48).



815Snapping of an elastic pseudo-rigid body

S. ELASTIC STABILITY AND SNAPPING

As an application of the theory of elastic stability to a hyperelastic continuum, we will
use energy criterion I (the adjacent method) stated as follows:

For a hyperelastic pseudo-rigid body, define an energy function:

V:= (1- U, (49)

where (1 is the stored elastic energy of the body, and U is the potential of the external forces
acting on the body. A static equilibrium position of the body is globally (locally) stable if
and only if V is a minimum for all virtual deformations (for all virtual deformations near
the equilibrium position).

Now for the given problem, it is not difficult to find that

(1 = mll(Fr. +Fr2+F~1 +F~2 -2)/2,

U = G'x" = mG12• (50)

from (24). (25) and (29). For convenience, we define the dimensionless energy function

such that

V
W,=-,

mil
(51 )

(52)

with D and p as parameters, where (28), (33), (36), (49) and (50) have been used. Since for
the membrane under consideration, the degrees of freedom of deformation are two, we will
use Jx and JFI2 to denote its virtual deformation.

We first examine the case p = 0, for which x = F I2 = 0 represents an equilibrium
configuration of the structure with D> O. For the structure with D ~ I, it follows from
(52) that

W(Jx, JFd - W(O,O) = [(Di5x) 2 + (Di5F I2 )2 + (I + i5xi5F12 )
2 -1)/(2D2)

~ ([(i5x) 2 + (i5F I2 )2 + (I + i5xi5FI2 )2 -1)/(2D2)

= [(i5x+i5Fd 2+ (i5xi5F ,2 )21/(2D2) ~ 0, (53)

for any i5x and i5FI2• Hence, the equilibrium position x = 0 of the structure with D ~ I is
globally stable in accordance with energy criterion I. Nevertheless, for D < I, upon choosing
Jx = aD = - i5F12 with 0 < a2 < 2( I - D2)/D2, we lind that

W(i5x,JFd- W(O,O) = [2(aD)2+(I-a 2D2)2/D2-I/D21/2

= a2[a 2D2 -2(I-D2)1/2 < O. (54)

Thus, it follows from energy criterion I that x = 0 is an unstable equilibrium position of
the structure with D < I. It has been indicated that if p = 0, the structure with D < 1 has
the other two equilibrium positions x~'c given by (42h Let F~f be the corresponding
values of F I2 at these positions. Then it is evident that

(55)

for any i5x and i5FI2• and
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W(xg.Ff2) = W(Xij'~2) = O. (56)

based on (45) and on the fact that the stored energy function W is non-negative. Thus,
both of xg·c are globally and neutrally stable equilibrium positions of the membranet.

Next, we examine the case p ¥= O. When p is small, it is mathematically difficult to
determine the sign of variation of the energy function W (52) for all virtual deformations
ch and bF12• For finite p, we do not even have a closed-form expression for an equilibrium
position of the membrane. For these reasons, we will use energy criterion II (the derivative
method) state as follows:

A static equilibrium position ofa hyperelastic pseudo-rigid body is locally stable ifand
only if the first- and the second-order variations of the energy function V (49) satisfy

c5V=O, (57)

for any virtual deformation near the equilibrium posttlOn. Furthermore. when
c5 V = 02V = 0, i.e. when an equilibrium position is a critical point, then this position is
locally stable if and only if

(58)

For convenience. we will use W defined by (51) again to replace V in (57) and (58). It
follows from (52) that MV = 0 ,lOd cF W > 0 hold if and only if

DW/iJFI2 = FI2 +x(1 +xFd/D2= 0;

t! 2W/I'X 2 = I +F~2/D2 > 0, (72W/iJF~2 = I +X2j[)2 > 0,

d.= (0 2WjiJx 2)(D2WjDFf2) - (D 2W/Dx DF ,2 )2

= (I +F;2/D2)(1 +x 2jD 2)-(I +2xFI2 f/D 4 > O.

To proceed. we need the relation

(59)

(60)

(61 )

(62)

which is derived from (46)1' (59h and (61). It is apparent th,tt (59) and (60) hold lor each
equilibrium configuration. since (59) arc equivalent to (34) and (35) I' Thus. when energy
criterion II is used. the stability of the equilibrium positions will be judged by (61) and by
dp/dx. the sign of which can be easily determined from the properties (e)-(g) given in
Section 4. In accordance with this argument. if D = I. every x :f. 0 is locally stable; if
D > I. every x is locally stable; and if D < I, every Ix I > Ix I is locally stable and every
Ixl < I.il is unstable. However, since d = 0 at x = 0 for the case D = I, and since L1 =0
at x = .i for the case D < I, where .i satisfies (48), then cF W may vanish for some virtual
deformations in these two cases. Thus the higher-order variations of W should be examined
for justification of stability in these two cases. II can be easily shown from (48) and (52)
that

()3 W = 0, c5 4 W = 12(e5x)2(c5Fd 2/D 2 > 0, atx = ° for D = I. (63)

c53W=6x[c5F12-(D2+x2)-'e5x]e5xc5FdD2:f.0, atx=.i, forD<t, (64)

where c5x and e5F'2 stand for a virtual deformation near the equilibrium positions. Equation

t An equilibrium position is neutrally stable if there exists a non·vanishing virtual defonnation such that
variation of the energy function IV vanishes.
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(63) implies stability of the position x = 0 for D = 1, while (64) means instability of the
positions .i for D < I.

We summarize the conclusions obtained from the application of energy criterions I
and II as follows:

(i) If D ~ I, all the equilibrium positions are stable.
(ii) If D < I, the equilibrium positions Ixl > I.il are stable. whereas the positions

Ix I ~ I·i I are unstable.
Now we are able to discuss snapping of the given structure. As usual, by snapping of

a body. we mean the deformation of the body from an unstable equilibrium position to a
stable equilibrium position when an infinitesimal disturbance is imparted to the body which
is subjected to a constant load. It can be confirmed from (i) that for the structure with
D ~ I, since all the equilibrium positions are stable. no snapping of the membrane will take
place. Subsequently, we will be concerneq with the case D < 1 and explain snapping of the
membrane by means of the analytic results and the curve with D = 0.5 in Fig. 2. Let the
point d of the membrane be gradually displaced along the curve E-F with decrement of the
load p. Before the point F is reached, all the static equilibrium positions are stable since
the slope dp/dx > O. However. when the point d is located at the equilibrium position F, it
will snap through to H under any infinitesimal disturbance to the membrane which is
subjected to a constant load pF since x is an unstable equilibrium position. Since the curve
is anti-symmetric, we can explain the same phenomenon when the point d is located at a
position corresponding to a point in the curve H-G. Moreover, when the membrane is
located at any position corresponding to a point in the curve G-F, say at the point Q, then
it will snap through to either M or N under any infinitesimal disturbance to the membrane
which is subjected to .1 constant load pQ, since for the curve G-F, its slope dp/dx < O. In
contrast to the behavior of an clastic spherical cap shown by Brodland and Cohen (1987).
no snap-back phenomenon will occur in the structure under consideration, because the load
p is a single-valued function of the displacement x of the point d.

To show a possible application of the obtained results to an unstable elastic matcrial
point. we substitute (30) into (20)4 so that the Cauchy forcc-momcnt of the neo-Hookean
material is

1: = m(/lFF'r +ql).

In particular, the shear force-moment I: 12 = I: 21 =1:' e I ® e2 of the membrane is

(65)

(66)

by the use of (28), (35) and (65). It can be seen from (34) and (66) that the load p and the
shear force-moment I: 12 only differ from each other by a constant coefficient. Thus, I: 12

has the same behavior as p. In the anti-shear problem ofa neo-Hookean cylinder considered
by Knowles (1989), the shear stress r can be represented in terms of the shear deformation
k by

r = M(k)k, (67)

where M is called the secant modulus of shear. Knowles (1989) shows that the cylinder can
sustain equilibrium shock waves if and only if its material in some region is elastically
unstable. When there is no constitutive theory guiding the representation of the modulus
M(k). Knowles (1989) gives a r .... k curve in his Fig. I(a), the profile of which is quite
similar to that of p .... x with D < I in our Fig. 2, to represent an unstable elastic point. We
notice that r in (67) is the same as I: 12 in (66), and that both k in (67) and x = F21 in (66)
represent shear deformation. The form of (66) is a special instance of that of (67). As a
result, we may use
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I
M(k) = 1- (D' k ,--), .-+ .- - D< I (68)

as a candidate for the representation of lvl in (67). since the relation (66) is obtained from
a physical structure.

The present analysis is concerned with static deformation of the membrane. But
snapping of the membrane usually involves dynamic deformation. In addition. a statically
stable equilibrium position may not be dynamically stable. Thus. further work based on
dynamics is required to fUlly investigate the behavior of the membrane in the given structure.
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